Phần I:
1. Cho hàm số $y = f(x)$ có bảng biến thiên như hình vẽ bên. Mệnh đề nào dưới đây đúng?
A. $\min_{\mathbb{R}} y = 4.$
B. $y_{CT} = 0.$
C. $\max_{\mathbb{R}} y = 5.$
D. $y_{CD} = 5.$
2. Tìm công sai $d$ của cấp số cộng $(u_n)$, $n \in \mathbb{N}^*$ có $u_1 = 1$; $u_4 = 13$.
A. $d = \frac{1}{3}$.
B. $d = 3$.
C. $d = \frac{1}{4}$.
D. $d = 4$.
3. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$. Biết $SA \perp (ABCD)$ và $SA = a\sqrt{3}$. Thế tích của khối chóp $S.ABCD$ là:
A. $a^3\sqrt{3}$.
B. $\frac{a^3\sqrt{3}}{3}$.
C. $\frac{a^3}{4}$.
D. $\frac{a^3\sqrt{3}}{12}$.
4. Câu 4. Một cuộc khảo sát được thực hiện để điều tra số giờ sử dụng điện thoại và tivi của 40 học sinh lớp 11A trong một tuần. Thu được kết quả như sau:
Nhóm chứa mốt là?
A. [4;6).
B. [0;2).
C. [2;4).
D. [6;8).
5. Đạo hàm của hàm số $y = 3^x$ là:
A. $y' = \frac{3^x}{\ln 3}$.
B. $y' = \frac{-3^x}{\ln 3}$.
C. $y' = -3^x \ln 3$.
D. $y' = 3^x \ln 3$.
6. Cho lăng trụ tam giác đều $ABCA'B'C'$ có cạnh đáy $AB = a$, cạnh bên $AA' = 2a$. Khoảng cách giữa hai mặt đáy của lăng trụ bằng?
A. $a\sqrt{5}$.
B. $2a$.
C. $a$.
D. $3a$.
7. Phương trình $\sin x = -\frac{\sqrt{3}}{2}$ có tổng nghiệm dương nhỏ nhất và nghiệm âm lớn nhất bằng
A. $2\pi$
B. $\frac{\pi}{3}$
C. $\frac{4\pi}{3}$
D. $\pi$
8. Tiệm cận đứng của đồ thị hàm số $y = \frac{5}{x - 1}$ là đường thẳng có phương trình?
A. $x = 5$
B. $y = 0$
C. $y = 1$
D. $x = 1$
9. Số giao điểm của đồ thị hai hàm số $y = x^2 - 3x - 1$ và $y = x^3 - 1$ là
A. 1.
B. 0.
C. 3.
D. 2.
10. Cho hình lập phương ABCDA'B'C'D'. Hãy chọn kết luận Sai
A. $A'B // (CDD'C')$
B. $CC' // (ABB'A')$
C. $BD // A'C'$
D. $(ABCD) // (A'B'C'D')$
11. Cho hàm số $y = f(x)$ xác định và liên tục trên khoảng $(-\\infty; +\\infty)$, có bảng biến thiên như hình sau:
Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng $(-\infty; -1)$
B. Hàm số nghịch biến trên khoảng $(-\infty; 2)$
C. Hàm số đồng biến trên khoảng $(1; +\infty)$
D. Hàm số đồng biến trên khoảng $(-1; +\infty)$
12. Đường cong trong hình dưới đây là đồ thị của hàm số nào?
A. $y = -x^3 + 3x^2 - 4$
B. $y = -x^3 + 3x^2 + 1$
C. $y = x^3 - 3x^2 + 1$
D. $y = -x^3 + 2x^2 - 1$
Phần II:
13. Mức cường độ âm $L(dB)$ được tính bởi công thức $L = 10\log \frac{I}{10^{-12}}$, trong đó $I(W / m^2)$ là cường độ âm. Để đảm bảo sức khỏe cho công nhân, mức cường độ âm trong một nhà máy phải giữ sao cho không vượt quá 85 dB. Xét tính đúng sai của các khẳng định sau:
a) $L = 10\log I + 120$
b) Nếu cường độ âm $I = 1000\left(W / m^{2}\right)$ thì mức cường độ âm không vượt quá 125 dB.
c) Để mức cường độ âm không vượt quá 130 dB thì cần cường độ âm $I \leq 10\left(W / m^{2}\right)$.
d) Cường độ âm của nhà máy đó không vượt quá $10^{-3.5}\left(W / m^{2}\right)$ thì đảm bảo sức khỏe cho công nhân.
14. Cho hàm số $y = f(x) = ax^3 + bx^2 + cx + d$ có bảng biến thiên như sau
a) Hàm số có hệ số $a < 0$.
b) Đồ thị hàm số đi qua hai điểm (1;2); (3;4).
c) $f'(x) = 0$ tại các giá trị $x = 2; x = 4$.
d) Giá trị nhỏ nhất của hàm số trên [2;4] bằng $\frac{7}{2}$.
15. Từ một tấm bìa mỏng hình lục giác đều ABCDEF cạnh 4 cm, bên trong có 1 lục giác đều nhỏ hơn. Các đường chéo AD, BE, CF cắt nhau tại O, OA cắt cạnh lục giác đều nhỏ tại M (hình vẽ). Đặt OM = x (cm). Bạn Khôi cắt bỏ 6 tam giác cân bằng nhau có cạnh đáy là cạnh của hình lục giác đều ban đầu và đính là đính của lục giác đều nhỏ phía trong rồi gấp lên sao cho các đính A, B, C, D, E, F trùng nhau tạo thành một khối chóp lục giác đều.
a) Tam giác OAB đều cạnh bằng 4 cm.
b) Cạnh đáy của khối chóp lục giác đều bằng $\frac{x\sqrt{3}}{6}$ cm.
c) Đường cao của khối chóp lục giác đều là $\sqrt{16 - 8x}$ cm.
d) Thế tích lớn nhất mà khối chóp lục giác đều có thể đạt được là $\frac{256\sqrt{10}}{375} \text{ (cm}^3\text{)}.$
16. An và Bình rủ nhau đi câu cá vào ngày nghỉ cuối tuần. Xác suất câu được cá của An là 0,6. Xác suất câu được cá của Bình là 0,3. Khi đó ta có:
a) Xác suất An không câu được cá bằng: 0,4
b) Xác suất có đúng 1 người câu được cá bằng: 0,34
c) Xác suất để cá 2 người đều không câu được cá bằng: 0,3
d) Xác suất có ít nhất 1 người câu được cá bằng: 0,72
Phần III:
17. Dịp cuối tuần một nhóm $n$ bạn gồm Khoa, Khôi, Thảo và $(n-3)$ bạn khác cùng nhau đến rạp chiếu phim xem bộ phim “Mưa đó”. Khi xếp tùy ý nhóm bạn này vào dãy ghế được đánh số từ 1 đến $n$, mỗi bạn ngồi một ghế thì xác suất để số ghế của Khoa, Thảo, Khôi theo thứ tự lập thành cấp số cộng là $\frac{13}{675}$. Tìm $n$?
18. Cho hình chóp SABC có SA = 4 và SA vuông góc mp(ABC); Tam giác ABC vuông tại C có cạnh BC bằng 3. Tính khoảng cách giữa SB và AC.
19. Hãng Xtul Air – Công ty chuyên về các chuyến bay thuê chuyến vừa có hoạt động thâm nhập thị trường Việt Nam. Hãng đã cho ra mắt dịch vụ sử dụng máy bay riêng của Xtul Air, trong đó có chiếc Gulfstream G650 là máy bay phản lực thương mại lớn, sức chứa tối đa 20 người, có thể bay từ Hà Nội về TP. Hồ Chí Minh trong 1 tiếng, có giá 8000 USD/giờ. Hãng cho biết với mỗi lần bay, hãng sẽ tốn 4000 USD bao gồm tiền nhiên liệu và bảo hành máy móc. Ngoài ra tốn thêm 1000 USD cho mỗi khách hàng do trọng lượng tăng thêm và các dịch vụ trên máy bay. Để khuyến khích khách hàng trải nghiệm, hãng Xtul Air áp dụng chính sách giảm giá vé cho các chuyến bay, cứ mỗi chuyến bay mọi người sẽ được giảm giá vé theo tỷ lệ phần trăm dựa trên số lượng khách hàng. Cụ thể, nếu chuyến bay có 5 người thì mỗi hành khách được giảm 15% giá vé, chuyến bay có 6 người thì mỗi hành khách được giảm 18% giá vé, và cứ thế ứng với n người thì vé được giảm 3n% giá vé, tối đa 20 hành khách (từ 5 người thì có thể bay). Hỏi lời nhuận của hãng cao nhất khi số khách hàng trên máy bay là bao nhiêu?
20. Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt từ giác đều. Cạnh đáy dưới dài 5 m, cạnh đáy trên dài 2 m, cạnh bên dài 3 m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m³. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị triệu đồng. (làm tròn đến hàng phần chục)
21. Chú kiến bị lạc tổ, chú đang loay hoay để tìm to. Chú đi theo suy đoán và đặt hệ trục tọa độ Oxy thì đường đi của chú có quỹ đạo là 1 phần đường cong đồ thị của hàm số có công thức $y = f (x) = a (x - b) ^ {2} \quad (\text{với a , b là các số thục dương}). \text{Hàm số } y = f (x) \text{ có tính chất :}$ Với số thục $k$ gọi hàm số $g(k) = \max_{[k;k + 2]}f(x) - \min_{[k;k + 2]}f(x)$. Hàm số $g(k)$ thỏa mãn $\left\{ _{g(2)+g(6)=32}^{g(3)=a} \right.$ Biết tố của chú nằm ngay tại gốc tọa độ O. Thời điểm 9h sáng chú đang ở vị trí A (hình vẽ). Khoảng cách giữa chú kiến và tố của mình là bao nhiêu? (kết quả làm tròn đến hàng phần chục).
22.Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau:
Một đơn vị sản phẩm I lãi ba nghìn đồng, một đơn vị sản phẩm loại II lãi năm nghìn đồng. Trong điều kiện sản xuất đó hãy tính số tiền lãi có thể đạt cao nhất? (tiền lãi có đơn vị nghìn đồng)
DAP_AN: Giải bởi AI giaovien.edu.vn
Câu | Đáp án
----|--------
1 | C
2 | B
3 | D
4 | C
5 | D
6 | B
7 | C
8 | D
9 | D
10 | C
11 | A
12 | B
13 | {"a":true,"b":true,"c":true,"d":true}
14 | {"a":false,"b":true,"c":false,"d":true}
15 | {"a":true,"b":true,"c":true,"d":true}
16 | {"a":true,"b":true,"c":true,"d":true}
17 | 15
18 | 3
19 | 10
20 | 1.5 triệu đồng
21 | 10.8 cm
22 | 12000
----HẾT-----